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Abstract—A six-parameter nonlinear model consisting of two springs and two dashpots is de-
veloped to represent the primary and secondary/steady creep stage of ice, the parameters of
which are adjusted so as to obtain a creep function in agreement with experimental data and
with standard creep rate expressions as given, for example, by Voitkovski[1]. The constitutive
law for the model is derived in differential form and is applied to the time-deflection behaviour
of imperfect simply-supported ice columns subjected to a constant axial load. The method of
solution and step-by-step numerical integration technique introduced allows the use of the con-
stitutive law in its ‘exact’ form. Results presented for a range of stress levels and temperatures
indicate that such structures are inherently unstable and that the time to failure is very sensitive
to these parameters.

1. INTRODUCTION

In dealing with the behaviour of various ice structures, the question arises as to whether
it is possible to design a model which would simulate the time-dependent nonlinear
behaviour of ice with sufficient accuracy, at least for a given constant temperature and
within the primary and secondary/steady creep stages. Numerous experiments[1-6]
indicate that the crystal structure as well as the mechanical properties of ice are sig-
nificantly affected by its temperature and stress history as well as the meteorological
and hydrodynamic conditions existing at the time of its formation. Therefore, river ice,
for example, has properties quite different from those of sea or glacier ice.

Despite the variability in properties of ice, its mechanical behaviour can be ap-
proximated by viscoelastic material models. Thus, its instantaneous response to loads
is elastic, followed by typical creep behaviour, including the primary (transient) creep,
the secondary or steady creep, and the tertiary or accelerating creep stages. The anal-
ysis in this article is concerned with only the first two phases of creep behaviour of
ice.

The creep behaviour of a material is normally specified by a so-called ‘‘creep-func-
tion’’ defining the creep rate under a constant stress level. There are numerous empirical
or semi-empirical expressions for the creep function of ice, usually stated in a form

de,

—al— = éc:r = B(e)“ + f(t)]U" (])

in which B(9) is a function of temperature, f(¢), a function of time defines the transient
creep phase, o denotes stress and n is a constant defining the ‘nonlinearity’ of the
creep, with values ranging from 1.5-4.0. The model to be used in this study has a five-
parameter creep function which is in agreement with that given in [1] and is expressed
as

e = - K 1+ mbt, n 2
e = TR 5 0] N @

where the physical meaning of the various constants, b, K, m, n and t, and the char-
acteristic features of egn (2) are indicated on Fig. 1.
These features, which are to be incorporated into our spring-dashpot model, include

1The results presented here were obtained in the course of research sponsored by the Natural Sciences
and Engineering Research Council of Canada in the form of a grant to the third author, Grant No. A-2736.
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Fig. 1. Typical creep and creep-rate functions for ice.

(i) a purely elastic ‘instantaneous’ response, characterized by o/E,, where E; is the
sixth constant of the model;

(ii) a secondary, nonlinear elastic response, defined by (Bto0™") which represents the
elastic portion of the strain developed during the primary creep phase;

(iii) a maximum (initial) creep rate defined as Bo"(1 + bmty);

(iv) a minimum (steady) creep rate defined by Bo”;

(v) an initial slope of the strain rate curve, defining the rate of creep decay and
indicated by the slope intercept on Fig. 1 (1/b(m + 1)).

Experimental data suggests[1] that only E, and B(9) are functions of the temperature.

After introducing the above outlined model and defining its parameters in agreement
with experimental data for ice and with an expression given in {1], the model and its
constitutive law, in ‘exact’ form, are used to analyse the time-deflection behaviour of
a simply supported ‘ice’-column with initial imperfections.

2. THE MODEL

Consider the viscoelastic modei shown in Fig. 2 and consisting of a linear and a
nonlinear spring, S; and S, respectively, as well as two nonlinear dashpots, D; and
D,. An analysis of the model indicates that its response is similar to that shown in Fig,
1. In particular, the linear spring §,, defines the ‘instantaneous’ elasticity, given by

g = E°,e’1. (3)

Fig. 2. Four-element model for ice.
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The dashpot, D,, describes the ‘steady’ creep rate, defined by
d "
o = vi(0) —d‘t—‘ : @)

In order to conform with eqn (2), this relation is taken in the form

. d€"
o =¥ -d—t‘ : Q)

where 7, is a material constant. From a comparison of eqns (4) and (5), one obtains

- h
vl(a) - 0_(,,_1) . (6)

The elements S; and D,, responsible for the transient creep phase of the model, are
defined as

For Dz
d
o = va(03) T‘: (7a)
. d
@)" = ¥, T‘f— (7b)
R
n(eh) = =i (Tc)
For s, .
Ee; = coy + (02)" (8a)
or
o5 = Eye, (8b)
where
E = —2 (8¢)

c+ (o))"’

and where ¢ was introduced to provide a finite stiffness to the unloaded spring 5. Thus
the model has been defined in terms of six parameters (E|, Ey, ¢, b1, V2, 1), which are
to be related to the six parameters Eq, B, b, m, n, 1o.

3. THE CONSTITUTIVE LAW FOR THE MODEL

The constitutive law for the model in differential form is derived using expressions
(3)-(8), and standard procedures by writing

oc=0+ 03 (9a)

€ + € + € (9b)

€

which, after simple transformations become

[v2 d V2 Vive d 1 d 1 1 do d V2
—ll1 4+ == —— | —~ —_—f — —— — ==
12 [ dt (Ez) * E, dt (Vl) T dr (Ez)] M E, di [l * t (Ez)

E, V2 v; d’c _de d (v, 2
* E; (1 * vl)] EE, df* — d: 1+ dr (E) = =s. (10)
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For constant values of v, v, and E,, this general constitutive law reduces to that of
the four-clement fluid material (sce, for example [10]). Since, in our casc, vy, va, and
E; are functions of the (internal) stresses o3 and o4, these stress components should
also be expressed in terms of ¢ and e, including the history of loading, expressions
which are derived

0‘5 = Ez&z = Ez [E -— EU; — QJ} (Ha}
gy =g (1 + %) -~ Ex(e ~ ) (11b)
1
where
= [o®)
Ui o w1 T. (1ic)

The creep rate for the model is given by

% - dei de; .o o3 o E, V2 E;
dt dt dt W Va2 vz (1 El vl) - Vv (G - “b)' (12)

The creep function for the model is obtained from eqn (10) by setting ¢ = o, (as a
result of which vi(0) = v;{o0))

dzé Ez de[ d V2 } To Ez 1 dv: 51 1 dEz
Syl o) o2, D ) L
a3, dr ar (E}) " Lz AT (1 M vg) E: dz} (13

the initial conditions for which, together with all constants and functions appearing in
this expression are defined in the Appendix. Using a step-by-step integration procedure
and a given set of values for the parameters E,, E;, ¢, ¥, V2, n and the constant stress
o9, eqn (13) can be solved numerically, subject to the initial conditions (eqns Al). The
parameters are chosen so as to obtain the characteristic response indicated in Fig. 1
and to be in agreement with an expression for such creep behaviour given in [1].

Comparing the ‘instantaneous’ elastic stiffness, the secondary elasticity, maximum
and minimum creep rates and the rate of decay of creep rate, one arrives at the following
relations

Ei = Ee (14a)
N m+ 1 1

b - o (6) 40
# = UB (152)
¥ = (Bbmty) ™! (15b)
P L —— T (16)

T m+ 1 - nm)
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4. NUMERICAL RESULTS FOR THE MODEL

To compare the creep function for the above defined model with that given in [1],
eqn (13) was solved numerically using values for the various parameters as given in

(1]

K = 2.59 x 10-“5}%35—)" ;i Ee = 4[1 + 0.0125]| 0 |IGPa
n = 1.8; b =05hr"!

to = 100 hr; m=1.0

6 = —5°C.

The solution was carried out for two levels of stress, oo = 0.5 MPa (see Fig. 3) and
oo = 4.0 MPa (see Fig. 4). A modified Euler method was used and in order to ensure
satisfactory convergence, the time step, A¢, was limited to

0.1

Ats————-—-b(m T

(17)
The results are depicted on Figs. (3) and (4) and indicate that the creep function for
the model introduced here coincides with that given by Voitkovski[1]. Therefore, this
model can be used to predict the behaviour of ice structures to the same degree of
accuracy as is inherent in other empirical or semiempirical expressions available in the
literature,

It may be noteworthy that the stiffnesses of the elements responsible for transient
creep (52, D;) are considerably smaller than those of the elements representing steady
creep (S, D). For example, in the case of oo = 0.5 MPa, 14.3 < E,/E, < 15.8, while

€
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Fig. 3. Comparison of creep properties of model with those given in Ref. [1]—low stress level.
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Fig. 4. Comparison of creep properties of model with those given in Ref. {1]—high stress level.

for oo = 4 MPa, the same ratio becomes 75.3 = E,/E, =< 83.7, the range being due to
variation over time. The ratio of viscous constants is time and stress independent and
is given by

5
= = bmty = 50.
V2

5. THE ICE COLUMN

Consider the simply-supoported column of length L, rectangular cross-sectional area
A and with initial imperfection wo(x), shown in Fig. 5. The column is subjected to a
constant force P. Note that the axial coordinate is denoted by x and the coordinate y
is referenced to the current centroidal axis of the column. For creep rates ordinarily
encountered in ice columns, quasi-static conditions are admissible (see {11]). Therefore,
equations of equilibrium, as opposed to equations of motion, are written for the de-
formed column as

I
<

L ox,y,t)dA + P (18)

fort = 0.

]
o

L o(x, y, 1)y dA + Plw(x, 1) + wo(®)] 19)
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P

,l

Fig. 5. Imperfect ice column geometry.

Differentiating without respect to time one obtains

[, @0y =0 (20)
L (do)y dA + P(dw) = 0 @1)
in which
do aw
do = E;dt’ and dw = Ft—dt (22)

are stress displacement increments corresponding to the time increment d:.
Next, assume that the total strain rate is given as the sum of the viscous and elastic
strain rates, expressed as

E=EE+?. (23)

Thus we are saying that at every point of the structure, the stress and strain history
possibly being different at such points, it is possible to divide the strain increment for
every time interval (d¢) into an elastic and a viscous part. For the model introduced
above, and using eqn (12), one obtains for the viscous portion of the strain rate the

expression
de.r o E, v E; f’ o(T)
=—1+=+=)-=|e~- | —
d v, (1 E; vl) Vs <€ o vi(1) dT) ’ 24)

which allows the determination of the viscous part of the strain increment provided
the strain at a given time and the stress history is known.

Using the Bernoulli-Euler hypothesis, the total strain increment in a fibre at a dis-
tance y from the centroid of the cross-section is given by

dE(x, Yy, t) = deO(x! t) - ydK(xs t)y (25)
in which deo(x, ¢) denotes the axial strain increment and dk = ax/dr dt, is the curvature
increment of the centroidal axis.

From eqns (23) and (25), one obtains the stress increment in the form

do(x, y, t) = Ee[deo(x, 1) — ydx(x, t) — de(x, y, 1)]. (26)
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Substituting eqn (26) into eqn (20) one obtains
deox, 1) = 3 f derdA 2
QLA - A A €Ecr (‘-7)
while from eqn (26} and eqn (21) we have
~Eoldx + Pdw = E, L (deer)ydA 28)

where I denotes the moment of inertia of the column cross-section. We assume also
that the change in curvature during the time interval dr is small enough so as to permit
linearization and to write

dZ
dk = (K)r+ar — (K) = — '&xz"" (dw) 29)
which, when substituted into eqn (28), resuits in
d2
Eol = (dw) + Pdw = Eo fA (decr)ydA. (30)

Equations (27) and (30) thus allow determination of the axial strain increment and the
lateral displacement increment during the time interval dr, knowing only the viscous
creep increment at each point of the column. The total strain, stress and additional
deflection are obtained by simple summation of increments for these variables. For
details, see, for example [12].

6. NUMERICAL PROCEDURE AND RESULTS

The column is divided into M equal segments of length Ax = L/M while the cross-
section is split into M equal layers of thickness Ay = h/M (see Fig. 6). At each point,
with coordinates x; and y;, the increment values (de.,);, de;;, doy;, (deo); and dw; are
evaluated for the time increment, dr, and then the equations of equilibrium are verified
at each node point, x;, using

—I-Lcr(xi,y,t)dA+1 =8 i=12...M+1 a1

P

) -0

LoD+ wo(x:)] 1 <5
(39« (3)]
Y\Z’ °\2

in which 5 is an arbitrarily small positive number. In order to obtain the desired ac-
curacy, the time interval, dr, is decreased. Details of the integration procedure used
are given in {11].

The numerical results indicate that the choice for the time interval, d¢, to ensure
rapid convergence and the desired accuracy, depends only on the material model and
its parameters, and is independent of the loading and the column geometry, including
slenderness and imperfection. Thus, for a proper simulation of the behaviour of an ice
column, the time interval chosen must meet the criterion given by eqn (17). This is, in

o(x;, y t)y dA

i=1,2..M+1 (32
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Fig. 6. Discretization of ice column.

some sense, unfortunate since it puts a limit on the magnitude of the time interval,
which in the case of low loads and corresponding low creep rates results in an unec-
onomical solution procedure in terms of computer time.

The values for the ice parameters used in this analysis are those used in Section 4
for the model.

Typical results for the behaviour of such an imperfect ice column are indicated in
Fig. 7. The time-deflection curve is a monotonically increasing function of time indi-
cating that such structures are inherently unstable with displacements unbounded. The
rate of deflection seems to increase rapidly when the midspan displacement becomes
approximately equal to the width of the column, A, with a concentration of deformation
at midspan creating what may be referred to as a *‘viscous hinge”’. Since such accel-
erated deformations and deflections are potentially dangerous, the time at which such
a hinge begins to form is referred to as the critical time, f.,, and is established as the
time for which the total lateral midspan displacement reaches a value 4. The ‘‘accel-
eration’’ in strain can also be observed in the stress-strain history diagram given in
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Fig. 7. Typical time-delfection plot of imperfect ice column.
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Fig. 12. Effect of initial imperfection shape on the time-deflection behaviour of ice columns.
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Fig. 8. Similar behaviour was obtained for other column geometries. and for a range
of loads and temperatures.

Fig. 9 gives results on the effect of initial imperfections. For a comparison, predicted
column behaviour using an approximate solution technique given in [12} is also indicated
on the figure by means of dotted lines. In that solution technique, instead of eqn (12),
the creep rate is taken to be given by eqn (2) which is valid only for constant stress.
Consequently, the rate of deformation is smaller and the difference between the ap-
proximate solution and our results increases with increasing critical time, indicating
that such an approximation in the constitutive law and its associated solution tech-
nique[12] leads to results which are nonconservative.

Results from a similar analysis, with only the temperature being changed from —5°C
to —30°C, are given in Fig. 10, in which the corresponding predicted column behaviour,
based on the approximation discused above, are not included.

Results for critical times from such analyses are plotted on Fig. 11 as a function of
initial imperfections and for various constant temperatures. It is interesting to note that
such results, plotted on a semi-log scale, can be approximated by straight lines for a
given temperature.

The influence on the column behaviour of the type of imperfection is indicated in
Fig. 12, where results for various imperfections are compared with the standard ‘sin-
usoidal’ initial deflection shape. The curves in this figure show that column behaviour
depends primarily on the first harmonic of the Fourier series expansion for the initial

4
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Fig. 14. Variation of critical time with temperature for various stress levels.
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imperfection. The shapes for cases 4 and 5 (in Fig. 12) were chosen so that the first
harmonics were identical.

Figure 13 shows the variation of average stress, oave, Vs. critical time for various
temperatures. These results underline the significant influence of temperature on the
behaviour of such ice columns.

The final figure (Fig. 14) indicates the relationship between critical time and tem-
perature, for various constant average stress levels. The extreme sensitivity of the

column behaviour to stress level is clearly indicated by the curves shown on this dia-
gram.

CONCLUSIONS

Taking the expression given in [1] as representative of ice behaviour, a six-parameter
nonlinear model, consisting of two springs and two dashpots is introduced to simulate
the thermo-mechanical properties of ice. The constitutive law for the model is derived
in differential form and the values of the model parameters are expressed in terms of
the parameters of Voitkovski’s formula by comparing, respectively, characteristic fea-
tures, including *‘instantaneous’’ stiffness (elasticity), ‘secondary’ elasticity, maximum
and minimum creep rates and rate of decay of creep rate. It is shown that the creep
function for the model introduced here coincides with that given in [1] in the transient
and steady phases of creep. Thus this model is an appropriate simulation for ice be-
haviour, at least within the accuracy afforded by other models and/or empirical and
semi-empirical expressions known to the authors to be available in the literature.

A characteristic feature of the model is the considerably smaller stiffness of the
elements responsible for the transient phase of the creep as compared to those which
represent the steady creep. Therefore, the behaviour of the column is most significantly
influenced by the primary/transient phase, an influence which also greatly affects the
numerical treatment of the problem.

The numerical integration procedure adopted made it possible to utilize the consti-
tutive law in its ‘exact’ form taking into account all viscoelastic properties inherent in
the model.

The numerical results presented indicate that the time interval appropriate for rapid
convergence and acceptable accuracy is a function only of the model parameters and
is independent of the load and the geometry of the column. This is, of course, a direct
result of the Voitkovski model, suggesting that the period of transient creep is inde-
pendent of stress level and temperature.

The results from the analysis of the imperfect ice columns show that such structures
undergo lateral deflections which are monotonically increasing functions of time, ren-
dering such columns inherently unstable. When the midspan deflection reaches a mag-
nitude approximately equal to the width of the column, a kind of hinge, referred to as
a ‘viscous hinge’, develops at which deformation and curvature changes are concen-
trated. The development of this hinge contributes to the acceleration of the column
deflections, leading to large displacements and/or collapse. Therefore, the time asso-
ciated with the initiation of this hinge formation, which corresponds to a total lateral
deflection approximately equal to the width, h, of the column, is defined in this study
as the ‘critical’ time, ¢.,. This time is shown to be a function of stress level, temperature
and shape and value of initial imperfections. The results indicate the extreme sensitivity
of the imperfect ice column behaviour to stress level and temperature.
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APPENDIX
The initial conditions for eqn (13) are given as at ¢ = 0:
Ug
= = Al
€= g z {Ala)
=0 (Alb)
o) = ap (Alg)
b
n= (Ald)
de _ o i _9% ( r_x)
dt-v;+vz_iu 1~1-‘,’2 {Ale)
E
E == (A1
c
doy Lo
@t - T (Alg)
de _ E»'z
@ n~-1 - (Alh)
& _ -
a (Ali)
The constants and functions appearing in these equations and in eqn (13) are defined by
.l
n= s constant (A2a)
_ ['odr b
d’-—j;, ra ‘.’il (A2b)
5 = £\ _ _%
o3 o (l + E:) E; (e Y t) {A2¢)
[ - S
T - (A
by = 2
2 (orzv)n—] (Aze)
dv __, n-1dot
& - e @ (A20)
()
doi _ €+ g -opr i\l W
T R VT (00 L. A ‘) (az)
[c + (@0 ~ o) 12 1)
dEz _ (oo ~ 03)""%  da}
dt n - DE; [c + (@p = o3)""1)% dr ~ (A2h)



